**SUMMARY**

Schrödinger's equation can be augmented using special relativity to investigate theoretically the deeply bound states in the hydrogen atom which appear when gravitation is taken into account. The basic qualitative idea was that the relativistic increase in mass of a rapidly orbiting electron would allow the gravitational interaction to exceed the electrostatic interaction in some states.

The extra mass factor due to special relativity in the Schrödinger equation can be approximated to include a term linear in the kinetic energy, so that the equation may be solved by regular methods. A change of radial variable avoids the singularity at the origin in normalisation which classically precludes deeply held states.

A set of states was discovered the energy of each of which
exceed the mass of the observable universe.
A further set of Peculiar States were found with an energy of
-2.1 x 10^{8} Kilograms.

A single atom undergoing a transition from a conventional state
to one of these states would release an amount of energy of order
10^{25} Joules.

The Peculiar States are of interest also because they are an infinitude of solutions, one for each integer value of angular momentum 'k'. In the simplistic model analysed here, these all had the same energy. However: more sophisticated models may be anticipated to predict splitting of this energy level. Transitions between such levels may then be sought in cosmic radiation which might indicate the actual existence of gravitational atoms.

An atom in a Peculiar state would also have a negative energy rather greater than the positive energy equivalent to its mass, so would appear to have a negative mass. Perhaps gravitationally it would repel ordinary atoms.

**INTRODUCTION**

This work describes the theoretical investigation into possible deeply bound states in the hydrogen atom which appear when gravitation is taken into account. The basic qualitative idea is that the mass of a rapidly orbiting electron is increased by its kinetic energy, which may be approximated using [Schwartz, 2007]:

m = rest mass of the electron

T = kinetic energy of the electron

c = velocity of light

**MATHEMATICAL DETAILS**

Quantitatively we may set up the Schrödinger equation to find the characteristic energy of the system. In this simple exploratory study, we take the approximations that the electron and proton are point masses and charges, and that the electron moves around a stationary proton centred on the coordinate origin, then:

T = kinetic energy

r = separation of the electron and the proton

e = electron charge = 1.6 x 10

G = universal constant of gravitation = 6.7 x 10

m = rest mass of the electron = 9.1 x 10

M = rest mass of the proton = 1.7 x 10

c = velocity of light = 3.0 x 10

h = reduced Planck's constant = 1.1 x 10

ε = permitivity of free space = 8.9 x 10

Then with E = total energy of the atom, we have

To find the stationary states of the system (e.g [Houston, 1959]) we transform this using de Broglie's relationship:

Δ is the Laplacian operator

B = 2m[e

C = 2mE/h

The normalisation condition requires a finite value of

∫ ∫ ∫ ψ.ψ

0 0 0

∫ ∫ ∫ ψ.ψ

-A 0 0

∫ Q

-A

Changing the variable by the substitutions

= (n/A).[ -1 ± (1 + AB/(2n

2mE/h^{2} = -[B/(2n)]^{2}
or
-[2n/A]^{2}
(34)

E = -(B^{2}.h^{2})/(8m.n^{2}) J
or
-2(n^{2}.h^{2})/(m.A^{2}) J
(35)

E = -(1/n^{2}).(m.e^{4})/(32π^{2}.ε^{2}.h^{2}) J
or
-n^{2}.(2h^{2}.c^{4})/(G^{2}.m.M^{2}) J
(36)

E = -2.2 x 10^{-18}/n^{2} J
or
-1.3 x 10^{70}n^{2} J
(37)

A unique 'Peculiar State' exists when n = 0 (i.e. when 2j = k). Then

= - 1.87 x 10

**DISCUSSION**

The solutions of the form

The solutions of the form

The 'Peculiar State' with an energy level of
-2.1 x 10^{8} kg is perhaps of most interest.

This state is actually an infinitude of solutions for all integer values of angular momentum 'k'. In the simplistic model analysed here, these all had the same energy. However: more sophisticated models may be anticipated to predict splitting of this energy level. Transitions between such levels may then be sought in cosmic radiation which might indicate the actual existence of gravitational atoms.

The energy level of the Peculiar State would mean that a single atom
undergoing a transition from a conventional state to this
state would release an amount of energy of order 10^{25} J.
This may be compared with a 10 Mt hydrogen bomb
(10^{17} J [De Volp, 2007]),
and the solar output: 4 x 10^{26} J/s [Allen, 1964]).

The state has a negative energy far in excess of the positive energy of the rest masses of the constituent particles. It would appear to be an object with a negative mass. It would presumably gravitationally repel and be repelled by normal matter. This would certainly account for the absence of any reports of such objects.

**ACKNOWLEDGEMENTS**

Many thanks are due to friends and colleagues who examined initial drafts of this work and explained to me some of errors therein, particularly Michael Partridge. Thanks are also due to Gaye Stinson of 'Burwood Public Library', Sydney, Professor John Crossley of Monash University, and many staff of the 'Faculty of Engineering and Information Technology' at the 'University of Technology, Sydney' for their assistance and support.

**REFERENCES**

Abramowitz, M., and Stegun, I.A. (eds.), 1972,

"Handbook of Mathematical Functions",

Dover, New York, 9th Printing, p. 504.

Allen, C.W., 1964,

"Astrophysical Quantities",

Athlone Press, London, 2nd Edition.

Behr, B.B., 2007.

"Universe", in Volume 19, "Encyclopedia of Science and Technology",

McGraw-Hill, New York, 10th Edition, pp. 80-89.

De Volp, A., 2007.

"Hydrogen Bomb", in Volume 8, "Encyclopedia of Science and Technology",

McGraw-Hill, New York, 10th Edition, pp. 712-713.

Houston, W.V, 1959,

"Principles of Quantum Mechanics",

Dover, New York, pp. 58-82.

Schwartz, H.M., 2007.

"Relativistic Mechanics", in Volume 15, "Encyclopedia of Science and Technology",

McGraw-Hill, New York, 10th Edition, pp. 330-332.

(written 11 August 1960, last updated 5 June 2017)